Search results for " laplacia"
showing 10 items of 24 documents
Partial data inverse problems for the Hodge Laplacian
2017
We prove uniqueness results for a Calderon type inverse problem for the Hodge Laplacian acting on graded forms on certain manifolds in three dimensions. In particular, we show that partial measurements of the relative-to-absolute or absolute-to-relative boundary value maps uniquely determine a zeroth order potential. The method is based on Carleman estimates for the Hodge Laplacian with relative or absolute boundary conditions, and on the construction of complex geometric optics solutions which reduce the Calderon type problem to a tensor tomography problem for 2-tensors. The arguments in this paper allow to establish partial data results for elliptic systems that generalize the scalar resu…
Representation of solutions and large-time behavior for fully nonlocal diffusion equations
2017
Abstract We study the Cauchy problem for a nonlocal heat equation, which is of fractional order both in space and time. We prove four main theorems: (i) a representation formula for classical solutions, (ii) a quantitative decay rate at which the solution tends to the fundamental solution, (iii) optimal L 2 -decay of mild solutions in all dimensions, (iv) L 2 -decay of weak solutions via energy methods. The first result relies on a delicate analysis of the definition of classical solutions. After proving the representation formula we carefully analyze the integral representation to obtain the quantitative decay rates of (ii). Next we use Fourier analysis techniques to obtain the optimal dec…
The Calderón problem for the fractional Schrödinger equation
2020
We show global uniqueness in an inverse problem for the fractional Schr\"odinger equation: an unknown potential in a bounded domain is uniquely determined by exterior measurements of solutions. We also show global uniqueness in the partial data problem where the measurements are taken in arbitrary open, possibly disjoint, subsets of the exterior. The results apply in any dimension $\geq 2$ and are based on a strong approximation property of the fractional equation that extends earlier work. This special feature of the nonlocal equation renders the analysis of related inverse problems radically different from the traditional Calder\'on problem.
The fractional Calderón problem: Low regularity and stability
2017
The Calder\'on problem for the fractional Schr\"odinger equation was introduced in the work \cite{GSU}, which gave a global uniqueness result also in the partial data case. This article improves this result in two ways. First, we prove a quantitative uniqueness result showing that this inverse problem enjoys logarithmic stability under suitable a priori bounds. Second, we show that the results are valid for potentials in scale-invariant $L^p$ or negative order Sobolev spaces. A key point is a quantitative approximation property for solutions of fractional equations, obtained by combining a careful propagation of smallness analysis for the Caffarelli-Silvestre extension and a duality argumen…
Principal eigenvalue of a very badly degenerate operator and applications
2007
Abstract In this paper, we define and investigate the properties of the principal eigenvalue of the singular infinity Laplace operator Δ ∞ u = ( D 2 u D u | D u | ) ⋅ D u | D u | . This operator arises from the optimal Lipschitz extension problem and it plays the same fundamental role in the calculus of variations of L ∞ functionals as the usual Laplacian does in the calculus of variations of L 2 functionals. Our approach to the eigenvalue problem is based on the maximum principle and follows the outline of the celebrated work of Berestycki, Nirenberg and Varadhan [H. Berestycki, L. Nirenberg, S.R.S. Varadhan, The principal eigenvalue and maximum principle for second-order elliptic operator…
The ∞-Eigenvalue Problem
1999
. The Euler‐Lagrange equation of the nonlinear Rayleigh quotient \( \left(\int_{\Omega}|\nabla u|^{p}\,dx\right) \bigg/ \left(\int_{\Omega}|u|^{p}\,dx\right)\) is \( -\div\left( |\nabla u|^{p-2}\nabla u \right)= \Lambda_{p}^{p} |u |^{p-2}u,\) where \(\Lambda_{p}^{p}\) is the minimum value of the quotient. The limit as \(p\to\infty\) of these equations is found to be \(\max \left\{ \Lambda_{\infty}-\frac{|\nabla u(x)|}{u(x)},\ \ \Delta_{\infty}u(x)\right\}=0,\) where the constant \(\Lambda_{\infty}=\lim_{p\to\infty}\Lambda_{p}\) is the reciprocal of the maximum of the distance to the boundary of the domain Ω.
Hitchhiker's guide to the fractional Sobolev spaces
2012
AbstractThis paper deals with the fractional Sobolev spaces Ws,p. We analyze the relations among some of their possible definitions and their role in the trace theory. We prove continuous and compact embeddings, investigating the problem of the extension domains and other regularity results.Most of the results we present here are probably well known to the experts, but we believe that our proofs are original and we do not make use of any interpolation techniques nor pass through the theory of Besov spaces. We also present some counterexamples in non-Lipschitz domains.
On the best Lipschitz extension problem for a discrete distance and the discrete ∞-Laplacian
2012
Abstract This paper concerns the best Lipschitz extension problem for a discrete distance that counts the number of steps. We relate this absolutely minimizing Lipschitz extension with a discrete ∞-Laplacian problem, which arises as the dynamic programming formula for the value function of some e -tug-of-war games. As in the classical case, we obtain the absolutely minimizing Lipschitz extension of a datum f by taking the limit as p → ∞ in a nonlocal p -Laplacian problem.
A tour of the theory of absolutely minimizing functions
2004
A detailed analysis of the class of absolutely minimizing functions in Euclidean spaces and the relationship to the infinity Laplace equation